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ABSTRACT 
Analytical performance assessment of Active Protection Systems (APS) and 

the vulnerability assessment of ground vehicles using classical physics-based 
modeling and simulations has many challenges. Also, modeling many of the factors 
involved in the interaction during Hard-Kill (HK) of the incoming threat with a 
countermeasure and the resulting outcomes are quite complex and have varied 
effects on the survivability of the vehicle. Therefore, relying only on deterministic 
solutions, are time consuming and computationally cost prohibitive. 

This effort is focused on changing this paradigm by researching for a 
suitable machine learning algorithm which takes in simulation data from high 
fidelity physics-based models as training data. Through decomposition, 
interpolation and reconstruction techniques, surrogate models can be constructed 
using the simulation data. These surrogate models can then be used for a quick 
assessment (fraction of a second compared to a day per simulation) during Analysis 
of Alternatives (AoA), and Vehicle Protection Systems (VPS) trade studies. 
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1. INTRODUCTION 

The proliferation of advanced Rocket 
Propelled Grenades (RPGs) and Anti-tank 
Guided Missiles (ATGMs) have become 

popular with insurgents and non-state actors 
as they are readily available, inexpensive and 
require very little training [1]. Advances in 
technology has made these threats over 
matching the current state-of-the-art armor. 
These rapidly evolving threats have 
heightened the need to Active Protection 
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Systems (APS) for US military use more 
aggressively. Army is focused on expediting 
deployment and fielding of vehicle APS 
technology on ground combat vehicles. 

 
Although many APS have been under 

development since 1950’s, a fully self-
contained yet affordable systems became 
available in the last decade. Performance 
assessment of these systems and the 
vulnerability assessment of ground vehicles 
equipped with APS using traditional physics-
based modeling and simulations has many 
challenges. Relying only on deterministic 
solutions, which are time consuming and 
computationally cost prohibitive. To address 
some of these challenges, the many stages of 
APS hard-kill sequences such as detection, 
tracking, decision to deploy the 
countermeasure events must be modeled. 
Also, the myriad possible ways of a 
countermeasure can interact with the 
incoming threat and simulating every 
possible scenario is cost prohibitive.  

 
This effort is focused on developing M&S 

framework using surrogate modeling 
techniques using the data generated from 
simulations using high fidelity physics-based 
models. Simulation data will be used to 
construct a surrogate model, which can be 
used for a quick assessment during AoA, and 
Vehicle Protection Systems (VPS) trade 
studies.  

 
2. Why Surrogates APS M&S? 

A surrogate model is a fast mathematical 
approximation to the long running physics-
based high-fidelity model. It is a learning 
method or technique to establish dependency 
between a systems inputs and outputs from 
the supplied data from a known set of 
samples [2]. There have been some studies 
done to demonstrate modeling and simulation 
of APS systems and high energy armor 
piercing threats using classical FE methods 
showcasing various techniques and methods 
[3] [4] [5] [6] [7]. As there are many variables 
involved in an endgame scenario, in any 
given sample distribution, accurate 
assessment of all possible engagement 
scenarios using classical methods is almost 
impossible. Also, there is a need for quick 
assessment for various functional objectives 
of military ground vehicle survivability, 
while performing trade studies, design 
exploration and analytical performance 
assessments. Although there are a few tools 
available [8], created using empirical data 
gathered from coupled threat-
countermeasure interactions and heuristics to 
make APS effectiveness and vulnerability 
assessments.  As newer technologies being 
inserted at a rapid rate, it is essential to have 
a more robust physics-based assessment 
tools, yet with a faster turnaround time as an 
alternative to expensive physical testing.  
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A surrogate model is a fast mathematical 
approximation to the long running physics-
based high-fidelity model. Surrogate models 
can be broadly classified in this study as 
scalar and full-field surrogate models. 

 
3. M&S FRAMEWORK 

  Various stages of end-to-end APS – threat 
engagement modeling and simulation can be 
broadly broken down into six stages as shown 
in Figure 1. The first three stages of detecting, 
tracking, and initiating a soft-kill with the 
oncoming threat when feasible are 
collectively grouped under front-end 
modeling. Whenever soft-kill is infeasible 
and a hard-kill becomes necessary for 
survivability, modeling of APS-threat 
engagement, tracking residuals which in turn 
becomes sub-threats and the terminal 
ballistics can be grouped as end-game 
modeling and simulation. This stage often 
referred to as the endgame is the most 
computationally intensive and time-
consuming aspect of end-to-end APS hard-
kill M&S. This paper is focused on modeling 
the endgame where high fidelity finite 
element models of APS system engaging 
with the threat mid-flight and determining the 
potential outcome to assess vulnerability. 

 
Two types of armor piercing threat types are 

considered in this study. Kinetic Energy (KE) 
threats such as a long rod penetrator and 
Chemical Energy (CE) threats such as Rocket 
Propelled Grenade (RPG). A notional blast-
only countermeasure, a type similar to Elbit 
Systems’ Iron Fist Light Decoupled (IFLD) 
APS is modeled for simulating end game 
scenarios. 

 
3.1. APS-KE threat engagement model 

A notional kinetic energy long rod 
penetrator is modeled as shown in Figure 2. 
A finite element model of the long rod 
penetrator is modeled using solid elements in 
the foreground mesh (Lagrangian) with about 

120K DOF and the countermeasure and the 
surrounding domain was modeled as the 
background mesh (Eulerian) with about 
100M DOF. The interaction is simulated 
using the Arbitrary Lagrangian Eulerian 
(ALE) method using the commercially off 
the shelf (COTS) software LS-DYNA®, 
capturing the nonlinear structural response 
amidst shockwaves from the countermeasure 
munitions.  Turnaround time for a typical 
simulation on a high-performance computer 
using 12 processors in parallel takes about 12 
CPU hours.  

 

  
A total of ten parameters describing the 

quality of APS design features and the quality 
of engagement are chosen to perform a 
design of experiments. Due to sensitive 
nature of these technologies, these 
parameters are hidden and they are simply 
referred to as x01 .. x10.  Similarly, their 
domain ranges are normalized. The quality of 
engagement is parametrized through 
characteristic features of APS, the relative 
position, orientation and velocities of the 
threat and APS. Figure 3 shows a sample 
scatter plot of two variables showing the 
distribution of 140 training and 35 
verification points.  

 
3.2. APS-CE threat engagement model 

A notional chemical energy penetrator is 
modeled as shown in Figure 4. A finite 
element model of a notional Rocket 
Propelled Grenade (RPG) is modeled using 
solid elements in the foreground mesh 

 
Figure 2 Model of an endgame scenario using 
notional countermeasure against a notional KE 
threat. 
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(Lagrangian) with about 16.5M DOF and the 
countermeasure and the surrounding domain 
was modeled as the background mesh 
(Eulerian) with about 17M DOF. The 
interaction is simulated using the Structural 
Arbitrary Lagrangian Eulerian (S-ALE) 
method using the commercially off the shelf 
(COTS) software LS-DYNA [9], capturing 
the nonlinear structural response amidst 
shockwaves from the countermeasure 
munitions.  Turnaround time for a typical 
simulation on a high-performance computer 
using 12 processors in parallel takes about 8 
CPU hours. 

 

A total of four parameters describing the 
quality of APS design features and the quality 
of engagement are chosen to perform a 
design of experiments [10]. Due to sensitive 
nature of these technologies, these 
parameters are also hidden and they are 
simply referred to as x02 .. x05.  Similarly, 
their domain ranges are normalized. The 

quality of engagement is parametrized 
through the relative position, orientation and 
velocities of the threat and APS. Figure 5 
shows a sample scatter plot of two variables 
showing the distribution of 24 training and 6 
verification points. 

 

 
4. LEARNING FROM DATA 

Machine learning techniques enable 
deployment of sophisticated algorithms on 
datasets to find relationships between input 
parameter or design variable combinations 
and their corresponding output responses. 
These output responses can be represented in 
the form of scalar quantities, transient field 
data or complete animation visualizations. 
These powerful data-driven techniques have 
proven to closely represent high-fidelity 
Finite Element (FE) simulation models to 
perform faster design exploration studies 
with high accuracy, thus significantly cutting 
down computing cost. The machine learning 
techniques used in this research vary from 
regression and classification algorithms like 
Kriging, RBF (Radial Basis Function), InvD 
(Inverse Distance), neural networks and 
SVM (Support Vector Machines) that can 
handle scalar quantities and class labels to 
Proper Orthogonal Decomposition (POD), 
Clustering and Fast-Fourier Transform (FFT) 
that can handle transient field data and 
animations. 

  
 

Figure 3 Sample scatter plot showing training and 
verification points plotted against two variables. 

 
 

Figure 4 Model of a notional CE threat (Rocket 
Propelled Grenade).  

 
Figure 5 Sample scatter plot showing training and 
verification points plotted against two variables. 
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4.1. Standard machine learning 
development procedure 

A standard procedure is used to deploy 
machine learning algorithms on the data 
considered in this study. 

1. Perform data cleaning if necessary 
2. Split the data into training and validation 

datasets with an 80%-20% split ratio 
3. Train a machine learning model on the 

training dataset using algorithms 
mentioned above based on the type of 
output response  

4. Tune the solver and hyperparameters of 
the model using the validation dataset 

5. Test the model’s prediction accuracy 
using RMSE metric 

6. Perform feature engineering and feature 
selection if necessary 

7. Iterate over these steps until the desired 
model prediction accuracy is obtained. 

Commercially off the shelf (COTS) solvers 
LS-OPT® for predicting scalar responses and 
ODYSSEE-CAE® are used for predicting 
transient field data including generating 
animations. 

 
5. RESULTS & DISCUSSIONS 

Once the input variables are established for 
both KE and CE scenarios, using space filling 
algorithm a set of training and verification 
points are generated.  

 
5.1. APS-KE endgame 

The main objective of APS hard kill of a KE 
type of threat is to impart a momentum 
transfer such that the fast-moving threat is 
deflected away from its intended target. The 
deflection of the threat away from its target 
as shown in Figure 6 is the main output 
response used to train the surrogate model. 

 
 

 

Once all the training data has been 
collected, a sensitivity study was conducted 
to understand the variable contribution to the 
response. Figure 7 shows the Sobol indices 
demonstrating the influence of input 
variables on the deflection or swerve 
response. From the figure it is apparent that 
only four of the 10 variables considered in 
this study had more than 90% of influence on 
the response.   

 

Altogether five different scalar surrogate 
modeling techniques were investigated to 
find out the best suitable algorithm for this 
application which offered highest predictive 
accuracy using a commercially off the shelf 
software LS-OPT®. A scalar type of 
surrogate modeling technique is quite useful 
when there is a single objective function, 
where a response is rather smooth, based on 
a certain criteria. These scalar type of 
surrogate modeling techniques at the core 

 
Figure 6 Deflection of a KE threat using APS hard-kill, 
also sometimes referred to as swerve.   

 
Figure 7 Only four variables have over 90% influence on 
the response. 
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differ only in the regression methods 
employed in the construction of those 
models. The simulation results from those 35 
verification points are compared against 
those predicted from each of these surrogate 
models and a comparison is depicted in 
Figure 8. All five models predicted with a 
reasonable accuracy with RMS errors less 
than 10%. Neural network-based techniques 
performed slightly better with less than 5% 
RMS error. 

 

 
Primary focus of defeating a threat in this 

study included only deflecting the threat 
away from its intended target, without any 
consideration of terminal ballistics. An 
aspect of this application is well suited for 
supervised learning such as classification. 
The outcome can be considered as binary, 
e.g., a hit or a miss based on an arbitrary 
target for deflection or swerve. Therefore, the 
training data collected can be suitably 
converted to labeled data and using a very 
popular technique such as support vector 
machine (SVM), a decision boundary of the 
design space can be constructed showing 
regions of interest.  A binary classification 
chart can be constructed showing the 
subregions separating regions of hit or miss 
for APS-KE endgame as shown in Figure 9.   
 

Thus created surrogate model with any 
given inputs within the domain runs very fast 

and predicts the response almost 
instantaneously making it ideal for 
incorporating in real time battle space 
gaming applications. A simple tool [11] was 
created based on the Neural Network based 
surrogate models within Excel for rapid 
exploration of trade space for engineers.  

 

5.2. APS-CE endgame 
 
Because of inclusion of shaped charge 

within a CE threat, hard-kill engagement 
outcomes with an APS is quite varied and 
complex [12] [13]. In this paper our focus 
was primarily on the non-jet producing 
outcomes such as deflection of the threat 
away from its intended target (resulting in a 
dud) like the KE threat discussed before and 
the break-up of the threat assuming that the 
effect of sub-threats is negligible without 
forming any jet. From the physical test data, 
it has been observed that the predominant 
failure mode of a CE threat encountering a 
blast only type APS results in the breaking up 
of the threat just behind the ogive. Based on 
observed data the deformation angle between 
the two halves (ogive and the body) is 
monitored to determine the break-up criteria 
along with the swerve due to momentum 
transfer from the APS.  

 
Figure 8 Predictive accuracy of various surrogate model 
types for APS-KE endgame. 

 
Figure 9 Explicit design space decomposition through 
classification technique showing regions of potential 
hits to the vehicle and misses (based on a given target 
swerve) plotted against two input variables. 
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From the training data similar to the 

previous case a sensitivity study was 
performed, and the resulting Sobol indices 
chart is presented in Figure 10. 

 

 
Similar to APS-KE endgame case, five 

different scalar surrogate modeling 
techniques were investigated to find out the 
best suitable algorithm for this application 
which offered highest predictive accuracy. In 
addition to the scalar surrogate models, three 
full field surrogate model types were also 
investigated using commercially off the shelf 
software, Odyssee-CAE®. A full field 
surrogate model takes in field data from the 
high-fidelity simulation and performs a 
decomposition of the field allowing for the 
spatial and temporal domains to be handled 
in a decoupled manner and enabling the 
spatial-temporal response to be reconstructed 
via a multiplication of two uncoupled fields. 
Not only one can predict the scalar output 
response but also time histories.  

 
  The simulation results from those 6 

verification points are compared against 
those predicted from each of these surrogate 
models and a comparison is depicted in 
Figure 11. RMS errors ranged from 15-25%. 
Full field models performed slightly better 
with less than 10% RMS error for the inverse 
distance type (Figure 12). 

 

 

 
Since the focus of this investigation was 

narrowed to only non-jet producing outcomes 
such as deflecting the threat away from its 
intended target or breaking up of the threat 
neglecting any risks of sub threats, the 
outcomes could be considered as binary, such 
as a hit or a miss.  A binary classification 
similar to the previous case was performed. 
From the labeled training data collected, a 
decision boundary of the design space is 
constructed showing regions of interest.  A 
chart is constructed showing the subregions 
separating regions of hit or miss for APS-CE 
endgame as shown in Figure 13.   

 
Figure 10 Influence of input variables on the response 

 
Figure 11 Predictive accuracy of various scalar 
surrogate model types for APS-CE endgame. 

 
Figure 12 Predictive accuracy of various full-field 
surrogate model types for APS-CE endgame. 
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Time history responses obtained from full 

field surrogate models are compared against 
high-fidelity physics-based simulation 
results and the comparison is presented in 
Figure 14 for a case when APS succeeded in 
breaking up the threat into two pieces.  A 
comparison snapshot from animations is also 
shown as Figure 15. It can be noted that the 
full field surrogate model runs much faster 
compared to the physics-based simulation 
without any need for a high-performance 
computer. 

 
6. CONCLUSIONS 

 
Physics-based direct numerical simulation 

of APS countermeasure engagement with 
oncoming threats is quite complex due to 
many factors involved. Prediction of such an 
engagement outcome depends on the 
accuracy of capturing the momentum transfer 
from the countermeasure to deflect/defeat the 
oncoming threat. This complexity requires 
very detailed modeling and sophisticated 
computational methods to avoid 
misrepresenting the underlying physics with 

numerical artifacts. This leads not only to 
significant effort in gathering geometry data 
and discretizing it, suitable for simulation but 
also exceedingly high computational costs.  

With the proliferation of technologies in 
both lethality and survivability, there are 
various potential threat-countermeasure 
technology combinations with virtually 
unlimited possible engagement scenarios to 
be considered for vulnerability analysis.  

 
Figure 13 Explicit design space decomposition 
through classification technique showing regions of 
potential hits to the vehicle (APS failing to deflect or 
break up the threats) and misses (APS deflected and 
dismembered threats) plotted against two input 
variables. 

 
Figure 14 Velocity time history comparison from the 
threat break-up into two pieces 

 
Figure 15 A snapshot of animations showing the 
comparison between physics-based simulation vs. 
from the surrogate model. 
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Both these factors make it cost prohibitive 
to perform an analytical assessment through 
physics-based direct numerical simulation in 
a timely manner to support Army’s needs of 
assessing competing technologies for vehicle 
survivability. 

In this paper it is demonstrated that 
surrogate modeling of APS-threat 
engagement for simple outcomes is feasible, 
although it needs to be proven for other 
complex engagement outcomes.  With the 
proliferation of technologies in both lethality 
and survivability, there are various potential 
threat-countermeasure technology 
combinations with virtually unlimited 
possible engagement scenarios to be 
considered for vulnerability analysis.  

With emerging technologies both in APS 
and high energy threats, a high-fidelity 
physics-based M&S framework is beneficial 
to assess outcomes from any given high 
energy threat-countermeasure hard-kill 
engagement scenarios in a consistent manner 
to generate training data for generating fast-
running surrogate models. 

Many choice of surrogate modeling 
techniques exist offering varied degrees of 
predictive accuracy; about 5-25% error in 
predictions. 

With a reasonably accurate surrogate 
model, many variabilities associated with 
hard-kill engagement scenarios can be 
quickly analyzed using Monte Carlo 
simulations on the physics-based surrogate 
model rather than heuristics-based 
engineering tools. 

Kriging method offered the best predictive 
accuracy when there was a larger (140) 
training dataset, while Inverse Distance 
method offered the best accuracy when the 
training dataset is smaller (24). 

Significant time save can be realized while 
analyzing new and what-if scenarios using 
surrogate models.  

Scalar surrogate models can run in real-time 
which can enhance virtual battle space 
environment with more physics-based 
outcomes in gaming scenarios.   

Full -field surrogate models although can 
not be run in real time but offers significant 
advantages for design exploration and 
analyzing what-if scenarios in an expeditious 
manner. 
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